Author:
Moya-Pérez J. A.,Nuño-Ballesteros J. J.
Abstract
AbstractLet $$f:(\mathbb R^3,0)\rightarrow (\mathbb R^5,0)$$
f
:
(
R
3
,
0
)
→
(
R
5
,
0
)
be an analytic map germ with isolated instability. Its link is a stable map which is obtained by taking the intersection of the image of f with a small enough sphere $$S^4_\epsilon $$
S
ϵ
4
centered at the origin in $$\mathbb R^5$$
R
5
. If f is of fold type, we define a labeled tree associated to its link and prove that is a complete topological invariant for it. As an application we obtain the complete topological classification of map germs contained in the $$\mathcal {A}^2$$
A
2
-class $$(x,y,z^2,xz,0)$$
(
x
,
y
,
z
2
,
x
z
,
0
)
.
Publisher
Springer Science and Business Media LLC
Reference14 articles.
1. Benedini Riul, P., Ruas, M.A.S., de Jesus Sacramento, A.: Singular 3-manifolds in $$\mathbb{R} ^5$$. Rev. R. Acad. Cienc.Exactas Fís. Nat. Ser. A Mat. RACSAM 116(1), Paper No. 56, 18 pp (2022)
2. Fukuda, T.: Local topological properties of differentiable mappings I. Invent. Math. 65, 227–250 (1981/82)
3. Kawamura, K.: No inmersed 2-knots with at most one self-intersection point has triple point number two or three. Topol. Appl. 264, 394–412 (2019)
4. Klotz, C., Pop, O., Rieger, J.H.: Real double-points of deformations of $$\cal{A} $$-simple map germs from $$\mathbb{R} ^n$$ to $$\mathbb{R} ^{2n}$$. Math. Proc. Camb. Philos. Soc. 142(2), 341–363 (2007)
5. Marar, W.L., Nuño Ballesteros, J.J.: The doodle of a finitely determined map germ from $$\mathbb{R} ^2$$ to $$\mathbb{R} ^3$$. Adv. Math. 221(4), 1281–1301 (2009)