Abstract
AbstractFor positive integers n and k, with $$n \ge 4$$
n
≥
4
, let $$F_{n}$$
F
n
be the free group of rank n and let $$G_{n,k} = F_{n}/\gamma _{3}(F^{\prime }_{n})[F^{\prime \prime }_{n},~_{k}F_{n}]$$
G
n
,
k
=
F
n
/
γ
3
(
F
n
′
)
[
F
n
″
,
k
F
n
]
. We show that for sufficiently large n, the automorphism group $${\textrm{Aut}}(G_{n,k})$$
Aut
(
G
n
,
k
)
of $$G_{n,k}$$
G
n
,
k
is generated by the tame automorphisms and one more non-tame automorphism.
Publisher
Springer Science and Business Media LLC
Reference10 articles.
1. Bachmuth, S., Mochizuki, H.Y.: The non-finite generation of $${{\rm Aut}}(G)$$, $$G$$ free metabelian of rank 3. Trans. Am. Math. Soc. 270(2), 693–700 (1982)
2. Bachmuth, S., Mochizuki, H.Y.: $${{\rm Aut}}(F) \rightarrow {{\rm Aut}}(F/F^{\prime \prime })$$ is surjective for free group for rank $$\ge 4$$. Trans. Am. Math. Soc. 292(1), 81–101 (1985)
3. Bryant, R.M., Gupta, C.K.: Characteristic subgroups of free center-by-metabelian groups. J. Lond. Math. Soc. 29(2), 435–440 (1984)
4. Bryant, R.M., Gupta, C.K.: Automorphisms of free nilpotent-by-abelian groups. Math. Proc. Camb. Philos. Soc. 114, 143–147 (1993)
5. Bryant, R.M., Gupta, C.K., Levin, F., Mochizuki, H.Y.: Non-tame automorphisms of free nilpotent groups. Commun. Algebra 18, 3619–3631 (1990)