Author:
Coclite Giuseppe Maria,di Ruvo Lorenzo
Abstract
AbstractKuramoto–Velarde equation describes the spatiotemporal evolution of the morphology of steps on crystal surfaces, or the evolution of the spinoidal decomposition of phase separating systems in an external field. We prove the well-posedness of the classical solutions for the Cauchy problem, associated with this equation for each choice of the terminal timeT.
Publisher
Springer Science and Business Media LLC
Reference71 articles.
1. Armaou, A., Christofides, P.D.: Feedback control of the Kuramoto–Sivashinsky equation. Phys. D 137, 49–61 (2000)
2. Biagioni, H.A., Bona, J.L., Iorio, R., Scialom, M.: On the Korteweg-de Vries–Kuramoto–Sivashinsky equation. Adv. Differ. Equ. 1, 1–20 (1996)
3. Benney, D.J.: Long waves on liquid films. J. Math. Phys. 45, 150–155 (1966)
4. Cerpa, E.: Null controllability and stabilization of the linear Kuramoto–Sivashinsky equation. Commun. Pure Appl. Anal. 9, 91–102 (2010)
5. Chen, L.H., Chang, H.C.: Nonlinear waves on liquid film surfaces-II. Bifurcation analyses of the long-wave equation. Chem. Eng. Sci. 41, 2477–2486 (1986)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Wave propagation in dilatant granular materials;Asymptotic Analysis;2024-06-19
2. On the solutions for the Novikov equation;Journal of Hyperbolic Differential Equations;2024-03