Abstract
AbstractA positive answer is given to the existence of Sasakian structures on the tangent sphere bundle of some Riemannian manifold whose sectional curvature is not constant. Among other results, it is proved that the tangent sphere bundle $$T_{r}(G/K),$$
T
r
(
G
/
K
)
,
for any $$r> 0,$$
r
>
0
,
of a compact rank-one symmetric space G/K, not necessarily of constant sectional curvature, admits a unique G-invariant K-contact structure whose characteristic vector field is the standard field of T(G/K). Such a structure is in fact Sasakian and it can be expressed as an induced structure from an almost Hermitian structure on the punctured tangent bundle $$T(G/K){\setminus } \{\text{ zero } \text{ section }\}.$$
T
(
G
/
K
)
\
{
zero
section
}
.
Funder
AEI(Spain) and FEDER project
Publisher
Springer Science and Business Media LLC
Reference19 articles.
1. Abbassi, K.M.T., Calvaruso, G.: g-natural contact metrics on unit tangent sphere bundles. Mon. Math. 151(2), 89–109 (2006)
2. Abbassi, K.M.T., Calvaruso, G.: The curvature tensor of g-natural metrics on unit tangent sphere bundles. Int. J. Contemp. Math. Sci. 6(3), 245–258 (2008)
3. Abbassi, K.M.T., Sarih, M.: On natural metrics on tangent bundles of Riemannian manifolds. Arch. Math. (Brno) 41(1), 71–92 (2005)
4. Besse, A.L.: Manifolds All of Whose Geodesics are Closed. Springer, Berlin (1978)
5. Blair, D.E.: Riemannian Geometry of Contact and Symplectic Manifolds. Progress in Mathematics, vol. 203. Birk-häuser, Basel (2002)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Invariant contact metric structures on tangent sphere bundles of compact symmetric spaces;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2023-06-29