Abstract
AbstractThe aim of this note is to exploit a new relationship between additive combinatorics and the geometry of monomial projective curves. We associate to a finite set of non-negative integers $$A=\{a_1,\ldots , a_n\}$$
A
=
{
a
1
,
…
,
a
n
}
a monomial projective curve $$C_A\subset \mathbb P^{n-1}_{{\mathbf {k}}}$$
C
A
⊂
P
k
n
-
1
such that the Hilbert function of $$C_A$$
C
A
and the cardinalities of $$sA:=\{a_{i_1}+\cdots +a_{i_s}\mid 1\le i_1\le \cdots \le i_s\le n\}$$
s
A
:
=
{
a
i
1
+
⋯
+
a
i
s
∣
1
≤
i
1
≤
⋯
≤
i
s
≤
n
}
agree. The singularities of $$C_A$$
C
A
determines the asymptotic behaviour of |sA|, equivalently the Hilbert polynomial of $$C_A$$
C
A
, and the asymptotic structure of sA. We show that some additive inverse problems can be translate to the rigidity of Hilbert polynomials and we improve an upper bound of the Castelnuovo-Mumford regularity of monomial projective curves by using results of additive combinatorics.
Publisher
Springer Science and Business Media LLC
Reference23 articles.
1. Bermejo, I., García-Llorente, E., García-Marco, I.: Algebraic invariants of projective monomial curves associated to generalized arithmetic sequences. J. Symbolic Comput. 81, 1–19 (2017)
2. Bruns, W., Herzog, J.: Cohen–Macaulay Rings, Revised Edition, Cambridge Studies in Advanced Mathematics, vol. 39. Cambridge University Press, Cambridge (1997)
3. Cavaliere, M.P., Niesi, G.: On monomial curves and Cohen–Macaulay type. Manuscr. Math. 42(2–3), 147–159 (1983)
4. Cavaliere, M.P., Niesi, G.: Sulle equazioni di una curva monomiale proiettiva. Ann. Univ. Ferrara Sec. VII- Sc. Mat. XXX (1984)
5. Colarte-Gómez, L., Elias, J., Miró-Roig, R.M.: Sumsets and Veronese varieties. Collectanea Mathematica (2022). https://doi.org/10.1007/s13348-022-00352-x
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献