Abstract
AbstractIn this paper, we analyze an eigenvalue problem for quasi-linear elliptic operators involving homogeneous Dirichlet boundary conditions in a open smooth bounded domain. We show that the eigenfunctions corresponding to the eigenvalues belong to $$L^{\infty }$$
L
∞
, which implies $$C^{1,\alpha }$$
C
1
,
α
smoothness, and the first eigenvalue is simple. Moreover, we investigate the bifurcation results from trivial solutions using the Krasnoselski bifurcation theorem and from infinity using the Leray–Schauder degree. We also show the existence of multiple critical points using variational methods and the Krasnoselski genus.
Publisher
Springer Science and Business Media LLC
Reference27 articles.
1. Ambrosetti, A., Malchiodi, A.: Nonlinear analysis and semilinear elliptic problems 2007. In: Cambridge Studies in Advanced Mathematics 104 (2007)
2. Allaire, G.: Numerical Analysis and Optimization. Oxford University, OUP Oxford (2007)
3. Anane, A.: Simplicité et isolation de la première valeur propre du p-laplacien avec poids. C. R. Acad. Sci. Paris Sér. Math. 305(16), 725–728 (1987)
4. Badiale, M., & Serra, E. (2010). Semilinear Elliptic Equations for Beginners: Existence Results via the Variational Approach. Springer Science & Business Media
5. Benci, V., D’Avenia, P., Fortunato, D., Pisani, L.: Solitons in several space dimensions: Derrick’s problem and infinitely many solutions. Arch. Ration. Mech. Anal. 154(4), 297–324 (2000)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献