Abstract
AbstractWe define the $$L^r$$
L
r
-variational integral and we prove that it is equivalent to the $$HK_r$$
H
K
r
-integral defined in 2004 by P. Musial and Y. Sagher in the Studia Mathematica paper The$$L^{r}$$
L
r
-Henstock–Kurzweil integral. We prove also the continuity of $$L^r$$
L
r
-variation function.
Publisher
Springer Science and Business Media LLC
Reference17 articles.
1. Boccuto, A., Skvortsov, V.A., Tulone, F.: Integration of functions ranging in complex Riesz space and some applications in harmonic analysis. Math. Notes 98(1), 25–37 (2015)
2. Boccuto, A., Skvortsov, V.A., Tulone, F.: A hake-type theorem for integrals with respect to abstract derivation bases in the Riesz space setting. Math. Slovaca 65(6), 1319–1336 (2015)
3. Calderon, A.P., Zygmund, A.: Local properties of solutions of elliptic partial differential equations. Studia Math. 20, 171–225 (1961)
4. Gordon, L.: Perron’s integral for derivatives in $$L^{r}$$. Studia Math. 28, 295–316 (1967)
5. Gordon, R.A.: The Integrals of Lebesgue, Denjoy, Perron, and Henstock, Graduate Studies in Mathematics, vol. 4. American Mathematical Society, Washington (1994)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献