The Modular Isomorphism Problem and Abelian Direct Factors

Author:

García-Lucas Diego

Abstract

AbstractLet p be a prime and let G be a finite p-group. We show that the isomorphism type of the maximal abelian direct factor of G, as well as the isomorphism type of the group algebra over $${{\mathbb {F}}}_p$$ F p of the non-abelian remaining direct factor, if existing, are determined by $${{\mathbb {F}}}_p G$$ F p G , generalizing the main result in Margolis et al. (Abelian invariants and a reduction theorem for the modular isomorphism problem, Journal of Algebra 636, 533-559 (2023)) over the prime field. To do this, we address the problem of finding characteristic subgroups of G such that their relative augmentation ideals depend only on the k-algebra structure of kG, where k is any field of characteristic p, and relate it to the modular isomorphism problem, extending and reproving some known results.

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Reference25 articles.

1. Bagiński, C.: The isomorphism question for modular group algebras of metacyclic $$p$$-groups. Proc. Am. Math. Soc. 104(1), 39–42 (1988)

2. Bagiński, C.: On the isomorphism problem for modular group algebras of elementary abelian-by-cyclic $$p$$-groups. Colloq. Math. 82(1), 125–136 (1999)

3. Broche, O., del Río, Á.: The Modular Isomorphism Problem for two generated groups of class two. Indian J. Pure Appl. Math. 52, 721–728 (2021)

4. Bagiński, C., Konovalov, A.: The Modular Isomorphism Problem for Finite $$p$$-groups with a Cyclic Subgroup of index $$p^2$$, Groups St. Andrews 2005. Volume 1, London Mathematical Society Lecture Note Series, vol. 339, pp. 186–193. Cambridge University Press, Cambridge (2007)

5. Bagiński, C., Kurdics, J.: The modular group algebras of $$p$$-groups of maximal class II. Commun. Algebra 47(2), 761–771 (2019)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3