Transference and Restriction of Bilinear Fourier Multipliers on Orlicz Spaces

Author:

Blasco Oscar,Üster Rüya

Abstract

AbstractLet G be a locally compact abelian group with Haar measure $$m_G$$ m G and let $$\Phi _i$$ Φ i , $$i=1,2,3$$ i = 1 , 2 , 3 , be Young functions. A bounded measurable function m on $$G\times G$$ G × G is a $$(\Phi _1,\Phi _2;\Phi _3)$$ ( Φ 1 , Φ 2 ; Φ 3 ) -bilinear multiplier if there exists $$C>0$$ C > 0 such that the bilinear map $$\begin{aligned} B_m (f,g)(\gamma )= \int _{G}\int _{G} m(x,y) {{\hat{f}}}(x) {{\hat{g}}}(y) \gamma (x+y) dm_G(x)dm_G(y), \end{aligned}$$ B m ( f , g ) ( γ ) = G G m ( x , y ) f ^ ( x ) g ^ ( y ) γ ( x + y ) d m G ( x ) d m G ( y ) , satisfies $$N_{\Phi _3}(B_m(f,g))\le CN_{\Phi _1}(f)N_{\Phi _2}(g)$$ N Φ 3 ( B m ( f , g ) ) C N Φ 1 ( f ) N Φ 2 ( g ) for functions in $$f,g\in L^1({{\hat{G}}})$$ f , g L 1 ( G ^ ) such that $${{\hat{f}}},{{\hat{g}}}\in L^1(G)$$ f ^ , g ^ L 1 ( G ) . We denote by $${\mathcal {B}}{\mathcal {M}}_{(\Phi _1,\Phi _2;\Phi _3)}(G)$$ B M ( Φ 1 , Φ 2 ; Φ 3 ) ( G ) the space of all bilinear multipliers on $$G\times G$$ G × G and study some properties of this class. We consider $$(\Phi _1,\Phi _2;\Phi _3)$$ ( Φ 1 , Φ 2 ; Φ 3 ) -bilinear multipliers on various groups such as $${\mathbb {R}}\times {\mathbb {R}},\, \textbf{D}\times \textbf{D},\, {\mathbb {Z}}\times {\mathbb {Z}}$$ R × R , D × D , Z × Z and $${\mathbb {T}}\times {\mathbb {T}}$$ T × T . In particular we prove, under certain assumptions involving the norm of the dilation operator on the Orlicz spaces, that regulated bilinear multipliers in $${\mathcal {B}}{\mathcal {M}}_{(\Phi _1,\Phi _2;\Phi _3)}({\mathbb {R}})$$ B M ( Φ 1 , Φ 2 ; Φ 3 ) ( R ) coincide with $${\mathcal {B}}{\mathcal {M}}_{(\Phi _1,\Phi _2;\Phi _3)}(\textbf{D})$$ B M ( Φ 1 , Φ 2 ; Φ 3 ) ( D ) with where $$\textbf{D}$$ D stands for the real line with the discrete topology. Moreover, we investigate several transference and restriction results on multipliers acting on $${\mathbb {Z}}\times {\mathbb {Z}}$$ Z × Z and $${\mathbb {T}}\times {\mathbb {T}}$$ T × T .

Funder

Ministerio de Ciencia e Innovación

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu

Istanbul University

Publisher

Springer Science and Business Media LLC

Reference32 articles.

1. Blasco, O.: Notes in Transference of Bilinear Multipliers, pp. 28–38. Word Scientific, New Yersey, Advanced Courses of Mathematical Analysis III (2008)

2. Blasco, O.: Notes on the spaces of bilinear multipliers. Rev. Un. Mat. Argentina 50, 20–34 (2009)

3. Blasco, O.: Bilinear multipliers and transference. Int. J. Math. Math. Sci. 2005(4), 545–554 (2005)

4. Blasco, O.: Bilinear multipliers on Banach function spaces. J. Funct. Spaces 2019, Art. ID 7639380, (2019), 11 pp

5. Berkson, E., Blasco, O., Carro, M.J., Gillespie, T. A.: Discretization and transference of bisublinear maximal operators. J. Fourier Anal. Appl. 12, no. 4, pp. 447–481 (2006)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3