Abstract
AbstractLet G be a locally compact abelian group with Haar measure $$m_G$$
m
G
and let $$\Phi _i$$
Φ
i
, $$i=1,2,3$$
i
=
1
,
2
,
3
, be Young functions. A bounded measurable function m on $$G\times G$$
G
×
G
is a $$(\Phi _1,\Phi _2;\Phi _3)$$
(
Φ
1
,
Φ
2
;
Φ
3
)
-bilinear multiplier if there exists $$C>0$$
C
>
0
such that the bilinear map $$\begin{aligned} B_m (f,g)(\gamma )= \int _{G}\int _{G} m(x,y) {{\hat{f}}}(x) {{\hat{g}}}(y) \gamma (x+y) dm_G(x)dm_G(y), \end{aligned}$$
B
m
(
f
,
g
)
(
γ
)
=
∫
G
∫
G
m
(
x
,
y
)
f
^
(
x
)
g
^
(
y
)
γ
(
x
+
y
)
d
m
G
(
x
)
d
m
G
(
y
)
,
satisfies $$N_{\Phi _3}(B_m(f,g))\le CN_{\Phi _1}(f)N_{\Phi _2}(g)$$
N
Φ
3
(
B
m
(
f
,
g
)
)
≤
C
N
Φ
1
(
f
)
N
Φ
2
(
g
)
for functions in $$f,g\in L^1({{\hat{G}}})$$
f
,
g
∈
L
1
(
G
^
)
such that $${{\hat{f}}},{{\hat{g}}}\in L^1(G)$$
f
^
,
g
^
∈
L
1
(
G
)
. We denote by $${\mathcal {B}}{\mathcal {M}}_{(\Phi _1,\Phi _2;\Phi _3)}(G)$$
B
M
(
Φ
1
,
Φ
2
;
Φ
3
)
(
G
)
the space of all bilinear multipliers on $$G\times G$$
G
×
G
and study some properties of this class. We consider $$(\Phi _1,\Phi _2;\Phi _3)$$
(
Φ
1
,
Φ
2
;
Φ
3
)
-bilinear multipliers on various groups such as $${\mathbb {R}}\times {\mathbb {R}},\, \textbf{D}\times \textbf{D},\, {\mathbb {Z}}\times {\mathbb {Z}}$$
R
×
R
,
D
×
D
,
Z
×
Z
and $${\mathbb {T}}\times {\mathbb {T}}$$
T
×
T
. In particular we prove, under certain assumptions involving the norm of the dilation operator on the Orlicz spaces, that regulated bilinear multipliers in $${\mathcal {B}}{\mathcal {M}}_{(\Phi _1,\Phi _2;\Phi _3)}({\mathbb {R}})$$
B
M
(
Φ
1
,
Φ
2
;
Φ
3
)
(
R
)
coincide with $${\mathcal {B}}{\mathcal {M}}_{(\Phi _1,\Phi _2;\Phi _3)}(\textbf{D})$$
B
M
(
Φ
1
,
Φ
2
;
Φ
3
)
(
D
)
with where $$\textbf{D}$$
D
stands for the real line with the discrete topology. Moreover, we investigate several transference and restriction results on multipliers acting on $${\mathbb {Z}}\times {\mathbb {Z}}$$
Z
×
Z
and $${\mathbb {T}}\times {\mathbb {T}}$$
T
×
T
.
Funder
Ministerio de Ciencia e Innovación
Türkiye Bilimsel ve Teknolojik Araştırma Kurumu
Istanbul University
Publisher
Springer Science and Business Media LLC
Reference32 articles.
1. Blasco, O.: Notes in Transference of Bilinear Multipliers, pp. 28–38. Word Scientific, New Yersey, Advanced Courses of Mathematical Analysis III (2008)
2. Blasco, O.: Notes on the spaces of bilinear multipliers. Rev. Un. Mat. Argentina 50, 20–34 (2009)
3. Blasco, O.: Bilinear multipliers and transference. Int. J. Math. Math. Sci. 2005(4), 545–554 (2005)
4. Blasco, O.: Bilinear multipliers on Banach function spaces. J. Funct. Spaces 2019, Art. ID 7639380, (2019), 11 pp
5. Berkson, E., Blasco, O., Carro, M.J., Gillespie, T. A.: Discretization and transference of bisublinear maximal operators. J. Fourier Anal. Appl. 12, no. 4, pp. 447–481 (2006)