Zeros Under Unitary Weighted Composition Operators in the Hardy and Bergman Spaces

Author:

Montes-Rodríguez Alfonso

Abstract

AbstractLet $$\mathbb {D}$$ D denote the unit disk of the complex plane and let $$\mathcal {A}^2(\mathbb {D})$$ A 2 ( D ) be the Bergman space that consists of those analytic functions on $$\mathbb {D}$$ D that are of integrable square modulus with respect to the normalized area measure. Let $$\varphi : \mathbb {D} \rightarrow \mathbb {D}$$ φ : D D be an automorphism of the disk and consider $$C_\varphi f=f \circ \varphi $$ C φ f = f φ the operator defined from $$\mathcal {A}^2(\mathbb {D})$$ A 2 ( D ) onto itself. Consider the unitary operator $$U_\varphi f = \varphi ^\prime f \circ \varphi $$ U φ f = φ f φ . Then if $$f \in \mathcal {A}^2(\mathbb {D})$$ f A 2 ( D ) is even and $$U_\varphi f$$ U φ f is odd, then f is the zero function. The same is true if $$f \in \mathcal {A}^2(\mathbb {D})$$ f A 2 ( D ) is odd and $$U_\varphi f$$ U φ f is even. Similar results can be proved for the Hardy space of the unit disk, that is, the space of analytic functions on $$\mathbb {D}$$ D , whose Taylor coefficients are of summable square modulus. The result remains true for the Dirichlet space, that is, the space of analytic functions on $$\mathbb {D}$$ D , whose derivatives are in $$\mathcal {A}^2(\mathbb {D})$$ A 2 ( D ) .

Funder

Universidad de Sevilla

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Reference7 articles.

1. Bakan, A., Hedenmalm, H., Montes-Rodríguez, A., Radchenko, D., Viazovska, M.: Fourier uniqueness in even dimensions. Proc. Natl. Acad. Sci. USA 4, 118 (2021)

2. Canto-Martín, F., Hedenmalm, H., Montes-Rodríguez, A.: Perrón–Frobenius operators and the Klein–Gordon equation. J. Eur. Math. Soc. (JEMS) 16, 31–66 (2014)

3. Cowen, C.C., MacCluer, B.D.: Composition Operators on Spaces of Analytic Functions. Studies in Advanced Mathematics, p. xii + 388. CRC Press, Boca Raton (1995)

4. Hedenmalm, H., Montes-Rodríguez, A.: Heisenberg uniqueness pairs and the Klein–Gordon equation. Ann. Math. (2) 173, 1507–1527 (2011)

5. Hedenmalm, H., Montes-Rodríguez, A.: The Klein–Gordon equation, the Hilbert transform, and dynamics of Gauss-type maps. J. Eur. Math. Soc. (JEMS) 22, 1703–1750 (2020)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3