Abstract
AbstractLet $$\mathbb {D}$$
D
denote the unit disk of the complex plane and let $$\mathcal {A}^2(\mathbb {D})$$
A
2
(
D
)
be the Bergman space that consists of those analytic functions on $$\mathbb {D}$$
D
that are of integrable square modulus with respect to the normalized area measure. Let $$\varphi : \mathbb {D} \rightarrow \mathbb {D}$$
φ
:
D
→
D
be an automorphism of the disk and consider $$C_\varphi f=f \circ \varphi $$
C
φ
f
=
f
∘
φ
the operator defined from $$\mathcal {A}^2(\mathbb {D})$$
A
2
(
D
)
onto itself. Consider the unitary operator $$U_\varphi f = \varphi ^\prime f \circ \varphi $$
U
φ
f
=
φ
′
f
∘
φ
. Then if $$f \in \mathcal {A}^2(\mathbb {D})$$
f
∈
A
2
(
D
)
is even and $$U_\varphi f$$
U
φ
f
is odd, then f is the zero function. The same is true if $$f \in \mathcal {A}^2(\mathbb {D})$$
f
∈
A
2
(
D
)
is odd and $$U_\varphi f$$
U
φ
f
is even. Similar results can be proved for the Hardy space of the unit disk, that is, the space of analytic functions on $$\mathbb {D}$$
D
, whose Taylor coefficients are of summable square modulus. The result remains true for the Dirichlet space, that is, the space of analytic functions on $$\mathbb {D}$$
D
, whose derivatives are in $$\mathcal {A}^2(\mathbb {D})$$
A
2
(
D
)
.
Publisher
Springer Science and Business Media LLC
Reference7 articles.
1. Bakan, A., Hedenmalm, H., Montes-Rodríguez, A., Radchenko, D., Viazovska, M.: Fourier uniqueness in even dimensions. Proc. Natl. Acad. Sci. USA 4, 118 (2021)
2. Canto-Martín, F., Hedenmalm, H., Montes-Rodríguez, A.: Perrón–Frobenius operators and the Klein–Gordon equation. J. Eur. Math. Soc. (JEMS) 16, 31–66 (2014)
3. Cowen, C.C., MacCluer, B.D.: Composition Operators on Spaces of Analytic Functions. Studies in Advanced Mathematics, p. xii + 388. CRC Press, Boca Raton (1995)
4. Hedenmalm, H., Montes-Rodríguez, A.: Heisenberg uniqueness pairs and the Klein–Gordon equation. Ann. Math. (2) 173, 1507–1527 (2011)
5. Hedenmalm, H., Montes-Rodríguez, A.: The Klein–Gordon equation, the Hilbert transform, and dynamics of Gauss-type maps. J. Eur. Math. Soc. (JEMS) 22, 1703–1750 (2020)