Author:
Shukla Niraj K.,Maury Saurabh Chandra,Mittal Shiva
Publisher
Springer Science and Business Media LLC
Reference26 articles.
1. Albeverio, S., Evdokimov, S., Skopina, M.: $$p$$-adic nonorthogonal wavelet bases. Proc. Steklov Inst. Math. 265(1), 135–146 (2009)
2. Albeverio, S., Evdokimov, S., Skopina, M.: $$p$$-adic multiresolution analysis and wavelet frames. J. Fourier Anal. Appl. 16, 693–714 (2010)
3. Baggett, L.W., Medina, H.A., Merrill, K.D.: Generalized multi-resolution analyses and a construction procedure for all wavelet sets in $${\mathbb{R}}^n$$. J. Fourier Anal. Appl. 5(6), 563–573 (1999)
4. Bakić, D.: Semi-orthogonal Parseval frame wavelets and generalized multiresolution analyses. Appl. Comput. Harmon. Anal. 21(3), 281–304 (2006)
5. Barbieri, D., Hernández, E., Mayeli, A.: Bracket map for the Heisenberg group and the characterization fo cyclic subspaces. Appl. Comput. Harmon. Anal. 37, 218–234 (2014)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献