Abstract
AbstractLet X be a Banach space and $$Y \subseteq X$$
Y
⊆
X
be a closed subspace. We prove that if the quotient X/Y is weakly Lindelöf determined or weak Asplund, then for every $$w^*$$
w
∗
-convergent sequence $$(y_n^*)_{n\in \mathbb N}$$
(
y
n
∗
)
n
∈
N
in $$Y^*$$
Y
∗
there exist a subsequence $$(y_{n_k}^*)_{k\in \mathbb N}$$
(
y
n
k
∗
)
k
∈
N
and a $$w^*$$
w
∗
-convergent sequence $$(x_k^*)_{k\in \mathbb N}$$
(
x
k
∗
)
k
∈
N
in $$X^*$$
X
∗
such that $$x_k^*|_Y=y_{n_k}^*$$
x
k
∗
|
Y
=
y
n
k
∗
for all $$k\in \mathbb N$$
k
∈
N
. As an application, we obtain that Y is Grothendieck whenever X is Grothendieck and X/Y is reflexive, which answers a question raised by González and Kania.
Funder
Agencia Estatal de Investigación
Fundación Séneca
Publisher
Springer Science and Business Media LLC
Reference15 articles.
1. Avilés, A., Cabello Sánchez, F., Castillo, J.M.F., González, M., Moreno, Y.: Separably injective Banach spaces. Lecture Notes in Mathematics, vol. 2132. Springer (2016)
2. Avilés, A., Marciszewski, W., Plebanek, G.: Twisted sums of $$c _0$$ and $$C(K)$$-spaces: a solution to the CCKY problem. Adv. Math. 369, 107168 (2020)
3. Lecture Notes in Mathematics;JMF Castillo,1997
4. Castillo, J.M.F., González, M., Papini, P.L.: On $${\rm weak}^*$$-extensible Banach spaces. Nonlinear Anal. 75(13), 4936–4941 (2012)
5. Fabian, M.: Gâteaux Differentiability of Convex Functions and Topology: Weak Asplund spaces. Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley and Sons, New York (1997)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献