Author:
Lucas Pascual,Ortega-Yagües José Antonio
Abstract
AbstractThe main goal of this paper is to show that helix surfaces and the Enneper surface are the only surfaces in the 3-dimensional Euclidean space $$\mathbb {R}^{3}$$
R
3
whose isogonal lines are generalized helices and pseudo-geodesic lines.
Publisher
Springer Science and Business Media LLC
Reference22 articles.
1. Bonnet, O.: Mémoire sur la théorie générale des surfaces. J. École Polytech. Math. 35 (1853)
2. Di Scala, A.J., Ruiz-Hernández, G.: Helix submanifolds of Euclidean spaces. Monatsh Math. 157, 205–215 (2009)
3. Do-Carmo, M.P.: Differential geometry of curves and surfaces. Prentice-Hall, New Jersey (1976)
4. Eisenhart, L.P.: A treatise on the differential geometry of curves and surfaces. Ginn and Company Proprietors, Boston (1909)
5. Hopf, H.: Über Flächen mit einer Relation zwischen den Hauptkrümmungen. Math. Nachr. 4, 232–249 (1951)