Abstract
AbstractFor a finite group G, we investigate the behavior of four invariants, $$\text {MaxDim}(G),$$
MaxDim
(
G
)
,
$$\text {MinDim}(G),$$
MinDim
(
G
)
,
$$\text {MaxInt}(G)$$
MaxInt
(
G
)
and $$\text {MinInt}(G),$$
MinInt
(
G
)
,
measuring in some way the width and the height of the lattice $${\mathcal {M}}(G)$$
M
(
G
)
consisting of the intersections of the maximal subgroups of G.
Publisher
Springer Science and Business Media LLC
Reference17 articles.
1. Ballester-Bolinches, A., Ezquerro, L.M.: Classes of Finite Groups, Mathematics and Its Applications, vol. 584. Springer, Dordrecht (2006)
2. Burness, T., O’Brien, E., Wilson, R.: Base sizes for sporadic simple groups. Isr. J. Math. 177, 307–33 (2010)
3. Burness, T., Garonzi, M., Lucchini, A.: On the minimal dimension of a finite simple group. With an appendex by T. C. Burnes and R. M. Guralnick. J. Combin. Theory Ser. A 171, 105175 (2020)
4. Burness, T., Garonzi, M., Lucchini, A.: Finite groups, minimal bases and the intersection number. arXiv:2009.10137
5. Cameron, P., Solomon, R., Turull, A.: Chains of subgroups in symmetric groups. J. Algebra 127(2), 340–352 (1989)