Author:
Martínez Antonio,Martínez-Triviño A. L.
Abstract
AbstractIn this paper, we study $$\varphi $$
φ
-minimal surfaces in $$\mathbb {R}^3$$
R
3
when the function $$\varphi $$
φ
is invariant under a two-parametric group of translations. Particularly those which are complete graphs over domains in $$\mathbb {R}^2$$
R
2
. We describe a full classification of complete flat-embedded $$\varphi $$
φ
-minimal surfaces if $$\varphi $$
φ
is strictly monotone and characterize rotational $$\varphi $$
φ
-minimal surfaces by its behavior at infinity when $$\varphi $$
φ
has a quadratic growth.
Publisher
Springer Science and Business Media LLC
Reference25 articles.
1. Alexandrov, A.D.: Uniqueness theorems for surfaces in the large. Vestnik. Leninger. Univ. Math. 11, 5–17 (1956)
2. Böme, R., Hildebrant, S., Tausch, E.: The two-dimensional analogue of the catenary. Pac. J. Math. 88(2), 247–278 (1980)
3. Cheng, X., Mejia, T., Zhou, D.: Stability and compactness for complete $$f$$-minimal surfaces. Trans. Am. Math. Soc. 367(6), 4041–4059 (2015)
4. Clutterbuck, J., Schnüre, O., Schulze, F.: Stability of translating solutions to mean curvature flow. Calc. Var. 29, 281–293 (2007)
5. Dierkes, U.: Singular minimal surfaces. In: Hildebrandt, S. et al. (eds.) Geometric Analysis and Nonlinear Partial Differential Equations, pp. 177–193 (2003)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献