Normal form approach to the one-dimensional periodic cubic nonlinear Schrödinger equation in almost critical Fourier-Lebesgue spaces

Author:

Oh Tadahiro,Wang Yuzhao

Abstract

AbstractIn this paper, we study the one-dimensional cubic nonlinear Schrödinger equation (NLS) on the circle. In particular, we develop a normal form approach to study NLS in almost critical Fourier-Lebesgue spaces. By applying an infinite iteration of normal form reductions introduced by the first author with Z. Guo and S. Kwon (2013), we derive a normal form equation which is equivalent to the renormalized cubic NLS for regular solutions. For rough functions, the normal form equation behaves better than the renormalized cubic NLS, thus providing a further renormalization of the cubic NLS. We then prove that this normal form equation is unconditionally globally well-posed in the Fourier-Lebesgue spaces ℱLp($${\cal F}{L^p}(\mathbb{T})$$ L p ( T ) ), 1 ≤ p < . By inverting the transformation, we conclude global well-posedness of the renormalized cubic NLS in almost critical Fourier-Lebesgue spaces in a suitable sense. This approach also allows us to prove unconditional uniqueness of the (renormalized) cubic NLS in ℱLp($${\cal F}{L^p}(\mathbb{T})$$ L p ( T ) ) for $$1 \leq p \leq {3 \over 2}$$ 1 p 3 2 .

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics,Analysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Uniqueness and non-uniqueness of the Gaussian free field evolution under the two-dimensional Wick ordered cubic wave equation;Annales de l'Institut Henri Poincaré, Probabilités et Statistiques;2024-08-01

2. Global dynamics for the stochastic KdV equation with white noise as initial data;Transactions of the American Mathematical Society, Series B;2024-02-21

3. Discrete Bilinear Operators and Commutators;The Journal of Geometric Analysis;2023-01-12

4. Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation in negative Sobolev spaces;Journal of Functional Analysis;2021-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3