Author:
Marklof Jens,Welsh Matthew
Abstract
AbstractIn the first paper of this series we established new upper bounds for multi-variable exponential sums associated with a quadratic form. The present study shows that if one adds a linear term in the exponent, the estimates can be further improved for almost all parameter values. Our results extend the bound for one-variable theta sums obtained by Fedotov and Klopp in 2012.
Publisher
Springer Science and Business Media LLC
Subject
General Mathematics,Analysis
Reference13 articles.
1. A. Borel. Introduction aux Groupes Arithmétiques, Publications de l’Institut de Mathématique de l’Université de Strasbourg, XV, Hermann, Paris, 1969.
2. A. Borel and L. Ji, Compactifications of locally symmetric spaces, J. Differential Geom. 73 (2006), 263–317.
3. S. Cosentino and L. Flaminio, Equidistribution for higher-rank Abelian actions on Heisenberg nilmanifolds, J. Mod. Dyn. 9 (2015), 305–353.
4. A. Fedotov and F. Klopp, An exact renormalization formula for Gaussian exponential sums and applications, Amer.J. Math. 134 (2012), 711–748.
5. H. Fiedler, W. Jurkat, and O. Körner, Asymptotic expansions of finite theta series, Acta Arith. 32 (1977), 129–146.