Author:
Duke William,Schulze-Pillot Rainer
Abstract
AbstractA new local-global result about the primitive representations of zero by integral ternary quadratic forms is proven. By an extension of a result of Kneser (given in the Appendix), it yields a quantitative supplement to the Hasse principle on the number of automorphic orbits of primitive zeros of a genus of forms. One ingredient in its proof is an asymptotic formula for a count of the zeros of a given form in such an orbit.
Publisher
Springer Science and Business Media LLC
Subject
General Mathematics,Analysis
Reference28 articles.
1. B. Berggren, Pytagoreiska trianglar, Tidskr. Elem. Mat. Fys. Kem. 17 (1934), 129–139.
2. M. Borovoi, On representations of integers by indefinite ternary quadratic forms, J. Number Theory 90 (2001), 281–293.
3. M. Borovoi and Z. Rudnick, Hardy–Littlewood varieties and semisimple groups, Invent. Math. 119 (1995), 37–66.
4. K. Conrad, Pythagorean descent, https://kconrad.math.uconn.edu/blurbs/linmultialg/descentPythag.pdf.
5. P. G. L. Dirichlet, Vorlesungen über Zahlentheorie, F. Vieweg und sohn, Braunschweig, 1879.