Multitrophic Interactions Between Arbuscular Mycorrhizal Fungi, Foliar Endophytic Fungi and Aphids

Author:

Razak Nadia AbORCID,Gange Alan C.ORCID

Abstract

AbstractAlmost all living plants can be simultaneously colonised by arbuscular mycorrhizal fungi in the roots and endophytes in the shoots, while also being attacked by insect herbivores. However, to date, no study has ever examined the multitrophic interactions between these two different fungal groups and insects on any species of forb. Here, we examined the effects of two commercial species mixtures of arbuscular mycorrhizal fungi (AMF) and two foliar endophytes (Colletotrichum acutatum and Cladosporium oxysporum) on the growth of an invasive weed, Impatiens glandulifera, and the aphids that attack it. AMF reduced plant biomass, which was most evident when C. oxysporum was inoculated. Mycorrhizal fungi had few effects on aphids, and these depended on the identity of the endophytes present. Meanwhile, endophytes tended to increase aphid numbers, but this depended on the identity of the AMF inoculum. Throughout, there were differences in the responses of the plant to the two mycorrhizal mixtures, demonstrating clear AMF specificity in this plant. These specific effects were also strongly affected by the endophytes, with a greater number of interactions found between the AMF and endophytes than between the endophytes themselves. In particular, AMF reduced infection levels by the endophytes, while some endophyte inoculations reduced mycorrhizal colonisation. We suggest that both AMF and endophytes could play an important part in future biological control programmes of weeds, but further multitrophic experiments are required to unravel the complexity of interactions between spatially separated parts of the plant microbiome.

Funder

Natural Environment Research Council

Publisher

Springer Science and Business Media LLC

Subject

Soil Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3