High-Throughput Absolute Quantification Sequencing Reveals that a Combination of Leguminous Shrubs Is Effective in Driving Soil Bacterial Diversity During the Process of Desertification Reversal

Author:

Liu Wangsuo,Qiu Kaiyang,Xie Yingzhong,Huang Yeyun,Wang Ruixia,Li Haichao,Meng Wenfen,He Yi,Li Yayuan,Li Haiquan,Zhao Pengbo,Yang Yi

Abstract

AbstractDesertification leads to the extreme fragility of ecosystems and seriously threatens ecosystem functioning in desert areas. The planting of xerophytes, especially leguminous shrubs, is an effective and common means to reverse desertification. Soil microorganisms play a crucial role in nutrient cycling and energy flow in ecosystems. However, the effects of introducing leguminous shrubs on soil microbial diversity and the relevant mechanisms are not clear. Here, we employed the high-throughput absolute quantification 16S rRNA sequencing method to analyze the diversity of soil bacteria in sand-fixing areas of mixed shrublands with three combinations of shrubs, i.e., C. korshinskii × Corethrodendron scoparium (CaKCoS), C. korshinskii × Calligonum mongolicum (CaKCaM), and C. scoparium × C. mongolicum (CoSCaM), in the south of the Mu Us Sandy Land, China. This area suffered from moving dunes 20 years ago, but after introducing these shrubs to fix the dunes, the ecosystem was restored. Additionally, the effects of soil physicochemical properties on soil bacterial composition and diversity were analyzed with redundancy analysis (RDA) and structural equation modeling (SEM). It was found that the Shannon index of soil bacteria in CaKCoS was significantly higher than that in CaKCaM and CoSCaM, and the abundance of the dominant phyla, including Actinobacteria, Proteobacteria, Acidobacteria, Chloroflexi, Planctomycetes, Thaumarchaeota, Armatimonadetes, candidate_division_WPS-1, and Nitrospirae, increased significantly in CaKCoS and CaKCaM compared to that in CoSCaM. RDA showed that the majority of soil properties, such as total nitrogen (TN), available potassium (AK), N:P ratio, soil moisture (SM), and available phosphorus (AP), were important soil environmental factors affecting the abundance of the dominant phyla, and RDA1 and RDA2 accounted for 56.66% and 2.35% of the total variation, respectively. SEM showed that the soil bacterial α-diversity was positively affected by the soil organic carbon (SOC), N:P ratio, and total phosphorus (TP). Moreover, CaKCoS had higher SM, total carbon (TC), total potassium (TK), and AP than CaKCaM and CoSCaM. Collectively, these results highlight a conceptual framework in which the combination of leguminous shrubs can effectively drive soil bacterial diversity by improving soil physicochemical properties and maintaining ecosystem functioning during desertification reversal. Graphical Abstract

Funder

Ningxia Key Research and Development Project

Ningxia High-Level Talent Innovation Program

National Natural Science Foundation of China

Ningxia Natural Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Soil Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference116 articles.

1. Bachar A, Soares MI, Gillor O (2012) The effect of resource islands on abundance and diversity of bacteria in arid soils. Microb Ecol 63(3):694–700. https://doi.org/10.1007/s00248-011-9957-x

2. Bao S (2000) Agricultural chemistry analysis of soil properties, 3rd edn. China Agriculture Press, Beijing

3. Bolyen E, Rideout J, Dillon M, Bokulich N, Abnet C, Al-Ghalith G, Alexander H, Alm E, Arumugam M, Asnicar F, Bai Y, Bisanz J, Bittinger K, Brejnrod A, Brislawn C, Brown C, Callahan B, Caraballo-Rodríguez A, Chase J, Cope E, Da Silva R, Diener C, Dorrestein P, Douglas G, Durall D, Duvallet C, Edwardson C, Ernst M, Estaki M, Fouquier J, Gauglitz J, Gibbons S, Gibson D, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley G, Janssen S, Jarmusch A, Jiang L, Kaehler B, Kang K, Keefe C, Keim P, Kelley S, Knights D, Koester I, Kosciolek T, Kreps J, Langille M, Lee J, Ley R, Liu Y, Loftfield E, Lozupone C, Maher M, Marotz C, Martin B, McDonald D, McIver L, Melnik A, Metcalf J, Morgan S, Morton J, Naimey A, Navas-Molina J, Nothias L, Orchanian S, Pearson T, Peoples S, Petras D, Preuss M, Pruesse E, Rasmussen L, Rivers A, Robeson M, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song S, Spear J, Swafford A, Thompson L, Torres P, Trinh P, Tripathi A, Turnbaugh P, Ul-Hasan S, van der Hooft J, Vargas F, Vázquez-Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber K, Williamson C, Willis A, Xu Z, Zaneveld J, Zhang Y, Zhu Q, Knight R, Caporaso J (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. https://doi.org/10.1038/s41587-019-0209-9

4. Cao C, Abulajiang Y, Zhang Y, Feng S, Wang T, Ren Q, Li H (2016) Assessment of the effects of phytogenic nebkhas on soil nutrient accumulation and soil microbiological property improvement in semi-arid sandy land. Ecol Eng 91:582–589. https://doi.org/10.1016/j.ecoleng.2016.03.042

5. Cao C, Zhang Y, Cui Z, Feng S, Wang T, Ren Q (2017) Soil bacterial community responses to revegetation of moving sand dune in semi-arid grassland. Appl Microbiol Biotechnol 101(15):6217–6228. https://doi.org/10.1007/s00253-017-8336-z

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3