Micro-scale Experimental System Coupled with Fluorescence-based Estimation of Fungal Biomass to Study Utilisation of Plant Substrates
-
Published:2021-07-03
Issue:
Volume:
Page:
-
ISSN:0095-3628
-
Container-title:Microbial Ecology
-
language:en
-
Short-container-title:Microb Ecol
Author:
Németh Julianna B., Knapp Dániel G.ORCID, Kósa Annamária, Hegedűs Panna Á., Herczeg GáborORCID, Vági PálORCID, Kovács Gábor M.ORCID
Abstract
AbstractThe degradation capacity and utilisation of complex plant substrates are crucial for the functioning of saprobic fungi and different plant symbionts with fundamental functions in ecosystems. Measuring the growth capacity and biomass of fungi on such systems is a challenging task. We established a new micro-scale experimental setup using substrates made of different plant species and organs as media for fungal growth. We adopted and tested a reliable and simple titration-based method for the estimation of total fungal biomass within the substrates using fluorescence-labelled lectin. We found that the relationship between fluorescence intensity and fungal dry weight was strong and linear but differed among fungi. The effect of the plant organ (i.e. root vs. shoot) used as substrate on fungal growth differed among plant species and between root endophytic fungal species. The novel microscale experimental system is useful for screening the utilisation of different substrates, which can provide insight into the ecological roles and functions of fungi. Furthermore, our fungal biomass estimation method has applications in various fields. As the estimation is based on the fungal cell wall, it measures the total cumulative biomass produced in a certain environment.
Funder
Magyar Tudományos Akadémia Hungarian Scientific Research Fund Nemzeti Kutatási Fejlesztési és Innovációs Hivatal Eötvös Loránd University
Publisher
Springer Science and Business Media LLC
Subject
Soil Science,Ecology,Ecology, Evolution, Behavior and Systematics
Reference74 articles.
1. Eastwood DC, Floudas D, Binder M, Majcherczyk A, Schneider P, Aerts A, Asiegbu FO, Baker SE, Barry K, Bendiksby M, Blumentritt M, Coutinho PM, Cullen D, de Vries RP, Gathman A, Goodell B, Henrissat B, Ihrmark K, Kauserud H, Kohler A, LaButti K, Lapidus A, Lavin JL, Lee YH, Lindquist E, Lilly W, Lucas S, Morin E, Murat C, Oguiza JA, Park J, Pisabarro AG, Riley R, Rosling A, Salamov A, Schmidt O, Schmutz J, Skrede I, Stenlid J, Wiebenga A, Xie X, Kües U, Hibbett DS, Hoffmeister D, Högberg N, Martin F, Grigoriev IV, Watkinson SC (2011) The plant cell wall-decomposing machinery underlies the functional diversity of forest fungi. Science 333:762–765. https://doi.org/10.1126/science.1205411 2. King BC, Waxman KD, Nenni NV, Walker LP, Bergstrom GC, Gibson DM (2011) Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi. Biotechnol Biofuels 4:4. https://doi.org/10.1186/1754-6834-4-4 3. van den Brink J, de Vries RP (2011) Fungal enzyme sets for plant polysaccharide degradation. Appl Microbiol Biotechnol 91:1477–1492. https://doi.org/10.1007/s00253-011-3473-2 4. Hacquard S, Kracher B, Hiruma K, Münch PC, Garrido-Oter R, Thon MR, Weimann A, Damm U, Dallery JF, Hainaut M, Henrissat B, Lespinet O, Sacristán S, Loren V, van Themaat E, Kemen E, McHardy AC, Schulze-Lefert P, O’Connell RJ (2016) Survival trade-offs in plant roots during colonization by closely related beneficial and pathogenic fungi. Nat Commun 7:11362. https://doi.org/10.1038/ncomms11362 5. Martin F, Kohler A, Murat C, Veneault-Fourrey C, Hibbett DS (2016) Unearthing the roots of ectomycorrhizal symbioses. NatRev Microbiol 14:760–773. https://doi.org/10.1038/nrmicro.2016.149
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|