Pipe flow: a gateway to turbulence

Author:

Eckert MichaelORCID

Abstract

AbstractPipe flow has been a challenge that gave rise to investigations on turbulence—long before turbulence was discerned as a research problem in its own right. The discharge of water from elevated reservoirs through long conduits such as for the fountains at Versailles suggested investigations about the resistance in relation to the different diameters and lengths of the pipes as well as the speed of flow. Despite numerous measurements of hydraulic engineers, the data could not be reproduced by a commonly accepted formula, not to mention a theoretical derivation. The resistance of air flow in long pipes for the supply of blast furnaces or mine air appeared even more inaccessible to rational elaboration. In the nineteenth century, it became gradually clear that there were two modes of pipe flow, laminar and turbulent. While the former could be accommodated under the roof of hydrodynamic theory, the latter proved elusive. When the wealth of turbulent pipe flow data in smooth tubes was displayed as a function of the Reynolds number, the empirically observed friction factor served as a guide for the search of a fundamental law about turbulent skin friction. By 1930, a logarithmic “wall law” seemed to resolve this quest. Yet pipe flow has not been exhausted as a research subject. It still ranks high on the agenda of turbulence research—both the transition from laminar to turbulent flow and fully developed turbulence at very large Reynolds numbers.

Funder

Deutsches Museum von Meisterwerken der Naturwissenschaft und Technik

Publisher

Springer Science and Business Media LLC

Subject

History and Philosophy of Science,Mathematics (miscellaneous)

Reference109 articles.

1. Baader, J. 1797. Theorie des Englischen Zylindergebläses. Neue philosophische Abhandlungen der Bayerischen Akademie der Wissenschaften 7: 121–168.

2. Baader, J. 1805. Beschreibung und Theorie des englischen Cylinder-Gebläses, nebst einigen Vorschlägen zur Verbesserung dieser Maschine. München: Joseph Lindauer.

3. Barbet, L.-A. 1907. Les grandes eaux de Versailles. Paris: H. Dunod et E. Pinat.

4. Belidor, B.F. 1737. Architecture hydraulique, ou l’art de conduire, d’élever et de ménager les eaux pour les differens besoins de la vie. Paris: Jombert.

5. Bistafa, S.R. 2015. Euler’s friction of fluids theory and the estimation of fountain jet heights. European Physical Journal History 40: 375–384.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3