Using MALDI-TOF mass spectrometry to identify ticks collected on domestic and wild animals from the Democratic Republic of the Congo

Author:

Ngoy Steve,Diarra Adama Zan,Laudisoit Anne,Gembu Guy-Crispin,Verheyen Erik,Mubenga Onésime,Mbalitini Sylvestre Gambalemoke,Baelo Pascal,Laroche Maureen,Parola Philippe

Abstract

AbstractMatrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS) has recently emerged as an alternative to morphological and molecular tools to identify tick species. In this study, we set out to evaluate and confirm the ability of MALDI-TOF MS to identify different species of ticks collected in the Democratic Republic of the Congo and preserved in 70% ethanol. A total of 575 ticks, of which 530 were collected from domestic pigs and 45 from wild animals, were subjected to MALDI-TOF MS analysis to evaluate the intraspecies reproducibility and interspecies specificity of MS profiles obtained from the different species. Morphologically, the ticks belonged to seven different species, namely Rhipicephalus complanatus, Rhipicephalus congolensis, Haemaphysalis muhsamae, Ixodes cumulatimpunctatus, Amblyomma exornatum, Amblyomma compressum and an unidentified Rhipicephalus sp. A total of 535/575 (93%) of the spectra obtained were of good enough quality to be used for our analyses. Our home-made MALDI-TOF MS arthropod database was upgraded with spectra obtained from between one and five randomly selected specimens per species. For these reference specimens, molecular identification of the ticks was also made using 16S, 12S rDNA genes and the Cox1 mtDNA gene sequencing. The remaining good quality spectra were then queried against the upgraded MALDI-TOF MS database, showing that 100% were in agreement with the morphological identification, with logarithmic score values (LSVs) between 1.813 and 2.51. The consistency between our morphological, molecular and MALDI-TOF MS identification confirms the capability and precision of MALDI-TOF MS for tick identification.

Publisher

Springer Science and Business Media LLC

Subject

Insect Science,Ecology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3