Abstract
AbstractThe embryonic stem cell test (EST) represents the only validated and accepted in vitro system for the detection and classification of compounds according to their developmental and reproductive teratogenic potency. The widespread implementation of the EST, however, in particular for routine application in pharmaceutical development, has not been achieved so far. Several drawbacks still limit the high-throughput screening of potential drug candidates in this format: The long assay period, the use of non-homogeneous viability assays, the low throughput analysis of marker protein expression and the compatibility of the assay procedures to automation. We have therefore introduced several advancements into the EST workflow: A reduction of the assay period, an introduction of homogeneous viability assays, and a straightforward analysis of marker proteins by flow cytometry and high content imaging to assess the impact of small molecules on differentiation capacity. Most importantly, essential parts of the assay procedure have been adapted to lab automation in 96-well format, thus enabling the interrogation of several compounds in parallel. In addition, extensive investigations were performed to explore the predictive capacity of this next-generation EST, by testing a set of well-known embryotoxicants that encompasses the full range of chemical-inherent embryotoxic potencies possible. Due to these significant improvements, the augmented workflow provides a basis for a sensitive, more rapid, and reproducible high throughput screening compatible platform to predict in vivo developmental toxicity from in vitro data which paves the road towards application in an industrial setting.
Funder
Seventh Framework Programme (FP7) of the European Commission
Publisher
Springer Science and Business Media LLC
Subject
Health, Toxicology and Mutagenesis,Cell Biology,Toxicology
Reference41 articles.
1. Buesen R, Genschow E, Slawik B, Visan A, Spielmann H, Luch A, et al. Embryonic stem cell test remastered: comparison between the validated EST and the new molecular facs-EST for assessing developmental toxicity in vitro. Toxicol Sci: An Official Journal of the Society of Toxicology. 2009;108(2):389–400.
2. Chen R, Chen J, Cheng S, Qin J, Li W, Zhang L, et al. Assessment of embryotoxicity of compounds in cosmetics by the embryonic stem cell test. Toxicol Mech Methods. 2010;20(3):112–8.
3. de Jong E, Louisse J, Verwei M, Blaauboer BJ, van de Sandt JJ, Woutersen RA, et al. Relative developmental toxicity of glycol ether alkoxy acid metabolites in the embryonic stem cell test as compared with the in vivo potency of their parent compounds. Toxicol Sci: An Official Journal of the Society of Toxicology. 2009;110(1):117–24.
4. Di Guglielmo C, Lopez DR, De Lapuente J, Mallafre JM, Suarez MB. Embryotoxicity of cobalt ferrite and gold nanoparticles: a first in vitro approach. Reprod Toxicol. 2010;30(2):271–6.
5. Doetschman TC, Eistetter H, Katz M, Schmidt W, Kemler R. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morpholog. 1985;87:27–45.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献