An in vitro model for postoperative cranial nerve dysfunction and a proposed method of rehabilitation with N-acetylcysteine microparticles

Author:

Kita AshleyORCID,Kedeshian Katherine,Hong Michelle,Hoffman Larry

Abstract

Abstract Purpose When operating near cranial motor nerves, transient postoperative weakness of target muscles lasting weeks to months is often observed. As nerves are typically intact at a procedure’s completion, paresis is hypothesized to result from a combination of neurapraxia and axonotmesis. As both neurapraxia and axonotmesis involve Schwann cell injury and require remyelination, we developed an in vitro RSC96 Schwann cell model of injury using hydrogen peroxide (H2O2) to induce oxidative stress and investigated the efficacy of candidate therapeutic agents to promote RSC96 viability. As a first step in developing a long-term local administration strategy, the most promising of these agents was incorporated into sustained-release microparticles and investigated for bioactivity using this assay. Methods The concentration of H2O2 which reduced viability by 50% was determined to establish a standard for inducing oxidative stress in RSC96 cultures. Fresh cultures were then co-dosed with H2O2 and the potential therapeutics melatonin, N-acetylcysteine, resveratrol, and 4-aminopyridine. Schwann cell viability was evaluated and the most efficacious agent, N-acetylcysteine, was encapsulated into microparticles. Eluted samples of N-acetylcysteine from microparticles was evaluated for retained bioactivity. Results 100 µM N-acetylcysteine improved the viability of Schwann cells dosed with H2O2. 100 µM Microparticle-eluted N-acetylcysteine also enhanced Schwann cell viability. Conclusion We developed a Schwann cell culture model of iatrogenic nerve injury and used this to identify N-acetylcysteine as an agent to promote recovery. N-acetylcysteine was packaged into microparticles and demonstrated promise as a locally administrable agent to reduce oxidative stress in Schwann cells.

Funder

National Institute on Deafness and Other Communication Disorders

American Neurotology Society

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3