Abstract
Abstract
Purpose
Olfactory adaptation is a peripheral (at the epithelium level) or a central (at the brain level) mechanism resulting from repeated or prolonged odorous exposure that can induce a perceptual decrease. The aim of this study was to assess whether a peripheral adaptation occurs when an odor is repeated ten times. Moreover, the specificity of the peripheral adaptation to the nature of the odorant was investigated.
Methods
Four odorants (eugenol, manzanate, ISO E Super and phenylethanol) were presented using precisely controlled air-dilution olfactometry. They differed in terms of their physicochemical properties. Electrophysiological recordings were made at the level of the olfactory mucosa, the so-called electro-olfactogram (EOG). Thirty-five right-handed participants were recruited.
Results
Sixty-nine percent of the participants presented at least one EOG, whatever the odor condition. The EOG amplitude did not significantly decrease over 10 repeated exposures to any odorant. The intensity ratings tended to decrease over stimulations for manzanate, PEA, and eugenol. No correlation was found between the mean EOG amplitudes and the mean intensity ratings. However, the presence of EOG amplitude decreases over stimulations for few subjects suggests that peripheral adaptation might exist.
Conclusion
Overall, our results did not establish a clear peripheral adaptation measured with EOG but indicate the eventuality of such an effect.
Funder
Technische Universität Dresden
Publisher
Springer Science and Business Media LLC
Subject
General Medicine,Otorhinolaryngology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献