Curvature analysis of CI electrode arrays: a novel approach to categorize perimodiolar positions without anatomical landmarks

Author:

Mewes AlexanderORCID,Dambon Jan,Brademann Goetz,Hey MatthiasORCID

Abstract

Abstract Purpose Perimodiolar electrode arrays may be positioned regular, over-inserted or under-inserted into the cochlea depending on the cochlear size and shape. The study aimed to examine whether there are differences between these groups in the local curvature along the intracochlear array. Individual curvature variables were developed to categorize the groups and the relationship between the curvature and the angular insertion depth at the electrode tip was analyzed. Methods The curvature along the intracochlear array was measured in the CBCT image of 85 perimodiolar electrodes of a single type. The mean curvature and the ratio of the mean curvature at contacts E14–16 to the mean curvature at E7–8 (bowing ratio) were calculated across the array, and its true positive rate (TPR) and false positive rate (FPR) were calculated to establish optimal threshold values to categorize the groups. Results 68.2% of the cases were categorized as regular positioned, 22.4% had an over-insertion and 9.4% had an under-insertion. The mean curvature was significantly weaker with under-insertion (< 342°) than with normal insertion depth (≥ 342°). With an over-insertion, the bowing ratio was < 1 and otherwise > 1. Both the mean curvature and bowing ratio were found to have an optimal threshold value with high TPR (= 1.00) and low FPR (≤ 0.06) for categorizing under-insertion and over-insertion, respectively. Conclusion Curvature analysis is a useful tool to assess if a perimodiolar electrode array has been inserted deep enough into the cochlea. Independent of critical anatomical landmarks, over-inserted arrays and under-inserted arrays could be well categorized by using individual curvature variables. The results need to be validated using additional data sets.

Funder

Universitätsklinikum Schleswig-Holstein - Campus Kiel

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3