Pharyngeal adaptation to bolus properties in patients with Parkinson’s disease

Author:

Saleem ShakeelaORCID,Miles Anna,Allen Jacqueline

Abstract

Abstract Purpose Dysphagia is common in people with Parkinson’s disease (PD). Yet, literature describing swallow function in PD using high-resolution manometry is limited. This study explored swallowing pressure metrics for varied bolus conditions in people with PD. Method A solid-state unidirectional catheter was used to acquire manometric data for triplicate swallows (5 ml, 10 ml, 20 ml; IDDSI 0, 2 & 4). Penetration-aspiration severity was rated during videofluoroscopy. Patient-reported measures included PDQ-8: Parkinson’s Disease Questionnaire-8 and EAT-10: Eating Assessment Tool-10. Quantitative manometric swallow analysis was completed through Swallow Gateway™. Metrics were compared to published normative values and generalized linear model tests explored modulatory effects. Results 21 participants (76% male; mean age 69.6 years, SD 7.1) with mild-moderate severity PD were studied. Two patients (9%) aspirated for single bolus thin liquid and paste trials and 15 patients (73%) scored > 3 EAT-10. Standardized PDQ-8 scores correlated with EAT-10 (p < 0.05). Abnormality in UES relaxation and distension was demonstrated by high UES integrated relaxation pressure and low UES maximum admittance (UES MaxAdm) values across varied bolus conditions. Participants demonstrated abnormally elevated pharyngeal contractility and increased post-swallow upper-esophageal sphincter (UES) contractility for thinner liquid trials. Alterations in volume and viscosity had significant effects on the bolus timing metric—distention to contraction latency. UES peak pressure measures were altered in relation to bolus viscosity. Conclusion This study identifies early pharyngoesophageal contractile changes in relation to bolus volume and viscosity in PD patients, associated with subtle deterioration of self-reported swallow scores. Manometric evaluation may offer insight into PD-related swallowing changes and help optimize diagnostics and treatment planning

Funder

University of Auckland

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3