Mitigating sparsity using Bhattacharyya Coefficient and items’ categorical attributes: improving the performance of collaborative filtering based recommendation systems
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence
Link
https://link.springer.com/content/pdf/10.1007/s10489-021-02462-8.pdf
Reference50 articles.
1. Patra BK, Launonen R, Ollikainen V, Nandi S (2014) Exploiting bhattacharyya similarity measure to diminish user cold-start problem in sparse data. In: International conference on discovery science. Springer, pp 252–263
2. Singh PK, Setta S, Pramanik PKD, Choudhury P (2019) Proceedings of the international conference on innovative computing and communication (ICICC-2019), Vol. 1087 of advances in intelligent systems and computing. In: Khanna A, Gupta D, Bhattacharyya S, Snasel V, Platos J, Hassanien A (eds). https://doi.org/10.1007/978-981-15-1286-5_1. Springer, pp 1–10
3. Singh PK, KD Pramanik P, Debnath NC, Choudhury P (2019) A novel neighborhood calculation method by assessing users’ varying preferences in collaborative filtering. In: Proceedings of the 34th international conference on computers and their applications (CATA 2019), no. 58 in EPiC series in computing, Honolulu, Hawaii. https://doi.org/10.29007/3xfj, pp 345–355
4. Aggarwal CC (2016) Model-based collaborative filtering. In: Springer International Publishing, Cham, pp 71–138
5. Koren Y (2008) Factorization meets the neighborhood: a multifaceted collaborative filtering model. In: Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp 426–434
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Aggregated Relative Similarity (ARS): a novel similarity measure for improved personalised learning recommendation using hybrid filtering approach;Multimedia Tools and Applications;2024-07-11
2. AI-Based Recommendation Systems: The Ultimate Solution for Market Prediction and Targeting;The Palgrave Handbook of Interactive Marketing;2023
3. Recommendation System with Biclustering;Big Data Mining and Analytics;2022-12
4. Utilizing Alike Neighbor Influenced Similarity Metric for Efficient Prediction in Collaborative Filter-Approach-Based Recommendation System;Applied Sciences;2022-11-17
5. Interactive Context-Aware Recommendation Over Online Sites;SSRN Electronic Journal;2022
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3