Frequent high minimum average utility sequence mining with constraints in dynamic databases using efficient pruning strategies
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence
Link
https://link.springer.com/content/pdf/10.1007/s10489-021-02520-1.pdf
Reference50 articles.
1. Ahmed CF, Tanbeer SK, Jeong BS (2010) A novel approach for mining high-utility sequential patterns in sequence databases. ETRI 32(5):676–686
2. Ahmed CF, Tanbeer SK, Jeong BS (2010) Mining high utility web access sequences in dynamic web log data. In Proceedings of 11th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, SNPD2010, pp.76–81
3. Shie BE, Cheng JH, Chuang KT, Tseng VS (2012) A one-phase method for mining high utility mobile sequential patterns in mobile commerce environments. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp.616–626
4. Shie BE, Hsiao HF, Tseng VS, Yu PS (2011) Mining high utility mobile sequential patterns in mobile commerce environments. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp.224–238
5. Shie BE, Yu PS, Tseng VS (2013) Mining interesting user behavior patterns in mobile commerce environments. Appl Intell 38(3):418–435
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. MFS-SubSC: an efficient algorithm for mining frequent sequences with sub-sequence constraint;Knowledge and Information Systems;2024-06-11
2. Mining Interesting Sequential Patterns using a Novel Balanced Utility Measure;Knowledge-Based Systems;2024-06
3. Metric learning for monotonic classification: turning the space up to the limits of monotonicity;Applied Intelligence;2024-03
4. TaSPM: Targeted Sequential Pattern Mining;ACM Transactions on Knowledge Discovery from Data;2024-02-28
5. Mining Top-k High Average-Utility Sequential Patterns for Resource Transformation;Applied Sciences;2023-11-15
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3