Convolutional neural network based on attention mechanism and Bi-LSTM for bearing remaining life prediction
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence
Link
https://link.springer.com/content/pdf/10.1007/s10489-021-02503-2.pdf
Reference42 articles.
1. Wu B, Li W, Qiu MQ (2017) Remaining useful life prediction of bearing with vibration signals based on a novel indicator[J]. Shock Vib 2017(PT.6):1–10
2. Ren L, Sun Y, Wang H et al (2018) Prediction of bearing remaining useful life with deep convolution neural network[J]. IEEE Access 2018:13041–13049
3. Zhu J, Chen N, Peng W (2019) Estimation of bearing remaining useful life based on multiscale convolutional neural network[J]. IEEE Trans Ind Electron 66(4):3208–3216
4. Liu R, Yang B, Hauptmann AG (2019) Simultaneous bearing fault recognition and remaining useful life prediction using joint loss convolutional neural network[J]. IEEE Trans Ind Inf PP(99):1–1
5. Qiu G, Gu Y, Chen J (2019) Selective health indicator for bearings ensemble remaining useful life prediction with genetic algorithm and Weibull proportional hazards model[J]. Measurement 150:107097
Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. GRU-AE-wiener: A generative adversarial network assisted hybrid gated recurrent unit with Wiener model for bearing remaining useful life estimation;Mechanical Systems and Signal Processing;2024-11
2. An interpretable operating condition partitioning approach based on global spatial structure compensation-local temporal information aggregation self-organizing map for complex industrial processes;Expert Systems with Applications;2024-09
3. A Novel Intelligent Prediction Model for the Containerized Freight Index: A New Perspective of Adaptive Model Selection for Subseries;Systems;2024-08-19
4. A fusion autoencoder model and piecewise anomaly index for aero-engine fault diagnosis;Applied Intelligence;2024-08-08
5. FTSDC: A novel federated transfer learning strategy for bearing cross-machine fault diagnosis based on dual-correction training;Advanced Engineering Informatics;2024-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3