Abstract
AbstractIn many real data science problems, it is common to encounter a domain mismatch between the training and testing datasets, which means that solutions designed for one may not transfer well to the other due to their differences. An example of such was in the BirdCLEF2021 Kaggle competition, where participants had to identify all bird species that could be heard in audio recordings. Thus, multi-label classifiers, capable of coping with domain mismatch, were required. In addition, classifiers needed to be resilient to a long-tailed (imbalanced) class distribution and weak labels. Throughout the competition, a diverse range of solutions based on convolutional neural networks were proposed. However, it is unclear how different solution components contribute to overall performance. In this work, we contextualise the problem with respect to the previously existing literature, analysing and discussing the choices made by the different participants. We also propose a modular solution architecture to empirically quantify the effects of different architectures. The results of this study provide insights into which components worked well for this challenge.
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献