How to train your pre-trained GAN models

Author:

Park Sung-WookORCID,Kim Jun-YeongORCID,Park JunORCID,Jung Se-HoonORCID,Sim Chun-BoORCID

Abstract

AbstractGenerative Adversarial Networks (GAN) show excellent performance in various problems of computer vision, computer graphics, and machine learning, but require large amounts of data and huge computational resources. There is also the issue of unstable training. If the generator and discriminator diverge during the training process, the GAN is subsequently difficult to converge. In order to tackle these problems, various transfer learning methods have been introduced; however, mode collapse, which is a form of overfitting, often arises. Moreover, there were limitations in learning the distribution of the training data. In this paper, we provide a comprehensive review of the latest transfer learning methods as a solution to the problem, propose the most effective method of fixing some layers of the generator and discriminator, and discuss future prospects. The model to be used for the experiment is StyleGAN, and the performance evaluation uses Fréchet Inception Distance (FID), coverage, and density. Results of the experiment revealed that the proposed method did not overfit. The model was able to learn the distribution of the training data relatively well compared to the previously proposed methods. Moreover, it outperformed existing methods at the Stanford Cars, Stanford Dogs, Oxford Flower, Caltech-256, CUB-200–2011, and Insect-30 datasets.

Funder

Korea Institute of Energy Technology Evaluation and Planning

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence

Reference59 articles.

1. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: Advances in neural information processing systems (NIPS)

2. Brock A, Donahue J, Simonyan K (2019) Large scale GAN training for high fidelity natural image synthesis. In: International Conference on Learning Representations (ICLR)

3. Mo S, Cho M, Shin J (2019) Instagan: Instance-aware image-to-image translation. In: International Conference on Learning Representations (ICLR)

4. Zhou T, Li Q, Lu H, Cheng Q, Zhang X (2023) GAN review: Models and medical image fusion applications. Inf Fusion 91:134–148

5. Park S-W, Huh J-H, Kim J-C (2020) BEGAN v3: avoiding mode collapse in GANs using variational inference. Electronics 9(4):688

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3