Collaborative attention neural network for multi-domain sentiment classification
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence
Link
https://link.springer.com/content/pdf/10.1007/s10489-020-02021-7.pdf
Reference47 articles.
1. Pawar PY, Gawande SH (2012) A comparative study on different types of approaches to text categorization. International Journal of Machine Learning and Computing 2(4):423–426. https://doi.org/10.7763%2Fijmlc.2012.v2.158
2. Friedman N, Geiger D, Goldszmidt M (1997) Bayesian network classifiers. Machine learning 29(2-3):131–163. https://doi.org/10.1023/A:1007465528199
3. Hearst MA, Dumais ST, Osuna E, et al. (1998) Support vector machines. IEEE Intelligent Systems and their applications 13(4):18–28. https://doi.org/10.1109/5254.708428
4. Xu B, Guo X, Ye Y, et al. (2012) An Improved Random Forest Classifier for Text Categorization. Journal of Computers 7(12):2913–2920. https://doi.org/10.4304%2Fjcp.7.12.2913-2920
5. Cho K, Van Merriënboer B, Gulcehre C, et al. (2014) Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing 1724–1734 https://doi.org/10.3115%2Fv1%2Fd14-1179
Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Analysis of customer reviews with an improved VADER lexicon classifier;Journal of Big Data;2024-01-07
2. A comprehensive survey on deep learning-based approaches for multimodal sentiment analysis;Artificial Intelligence Review;2023-07-28
3. Exploiting bi-directional deep neural networks for multi-domain sentiment analysis using capsule network;Multimedia Tools and Applications;2023-02-20
4. DeepSen: A Deep Learning-based Framework for Sentiment Analysis from Multi-Domain Heterogeneous Data;2022 25th International Conference on Computer and Information Technology (ICCIT);2022-12-17
5. Deep learning modeling of public’s sentiments towards temporal evolution of COVID-19 transmission;Applied Soft Computing;2022-12
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3