Abstract
AbstractA binary classification problem is common in medical field, and we often use sensitivity, specificity, accuracy, negative and positive predictive values as measures of performance of a binary predictor. In computer science, a classifier is usually evaluated with precision (positive predictive value) and recall (sensitivity). As a single summary measure of a classifier’s performance, F1 score, defined as the harmonic mean of precision and recall, is widely used in the context of information retrieval and information extraction evaluation since it possesses favorable characteristics, especially when the prevalence is low. Some statistical methods for inference have been developed for the F1 score in binary classification problems; however, they have not been extended to the problem of multi-class classification. There are three types of F1 scores, and statistical properties of these F1 scores have hardly ever been discussed. We propose methods based on the large sample multivariate central limit theorem for estimating F1 scores with confidence intervals.
Funder
Grants in aid for Scientific Research
Grants in Aid for Young Scientists
National Cancer Institute
Publisher
Springer Science and Business Media LLC
Cited by
104 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献