Funder
Project of science and technology research and development plan of China National Railway Group Co., Ltd
Beijing Social Science Foundation
Publisher
Springer Science and Business Media LLC
Reference30 articles.
1. Deb K, Pratap A, Agarwal S et al (2002) A fast elitist multi objective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197
2. Zhang Q, Liu W, Li H. The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances, 2009 IEEE congress on evolutionary computation, Trondheim, 203-208, (2009)
3. Yen GG, Lu H (2003) Dynamic multi objective evolutionary algorithm: adaptive cell-based rank and density estimation. IEEE Trans Evol Comput 7(3):253–274
4. Liu J, Zhang H, He K et al (2018) Multi-objective particle swarm optimization algorithm based on objective space division for the unequal-area facility layout problem. Expert Syst Appl 102:179–192
5. Liu HT, Du W, Guo ZX (2019) A multi-population evolutionary algorithm with single-objective guide for many-objective optimization. Inf Sci 503:39–60
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献