Accurate use of label dependency in multi-label text classification through the lens of causality
Author:
Funder
Shanghai Municipal Science and Technology Major Project
Shanghai Science and Technology Innovation Action Plan
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence
Link
https://link.springer.com/content/pdf/10.1007/s10489-023-04623-3.pdf
Reference53 articles.
1. Wang T, Liu L, Liu N et al (2020) A multi-label text classification method via dynamic semantic representation model and deep neural network. Appl Intell 50(8):2339–2351. https://doi.org/10.1007/s10489-020-01680-w
2. Wang S, Cai J, Lin Q et al (2019) An overview of unsupervised deep feature representation for text categorization. IEEE Trans Comput Soc Syst 6(3):504–517. https://doi.org/10.1109/TCSS.2019.2910599
3. Wankhade M, Rao ACS, Kulkarni C (2022) A survey on sentiment analysis methods, applications, and challenges. Artif Intell Rev 55(7):5731–5780. https://doi.org/10.1007/s10462-022-10144-1
4. Alswaidan N, Menai MEB (2020) A survey of state-of-the-art approaches for emotion recognition in text. Knowl Inf Syst 62(8):2937–2987. https://doi.org/10.1007/s10115-020-01449-0
5. Boutell MR, Luo J, Shen X et al (2004) Learning multi-label scene classification. Pattern Recognit 37(9):1757–1771. https://doi.org/10.1016/j.patcog.2004.03.009
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Dual-view graph convolutional network for multi-label text classification;Applied Intelligence;2024-07-15
2. A Semantic-Based Framework for Multi-Label Text Classification;2024 2nd International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA);2024-05-24
3. Collaborative learning of supervision and correlation for generalized zero-shot extreme multi-label learning;Applied Intelligence;2024-04
4. Label-Related Adaptive Graph Construction Based on Attention for Multi-label Text Classification;Lecture Notes in Computer Science;2024
5. Gate-Attention and Dual-End Enhancement Mechanism for Multi-Label Text Classification;Computers, Materials & Continua;2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3