A novel spatiotemporal multigraph convolutional network for air pollution prediction
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence
Link
https://link.springer.com/content/pdf/10.1007/s10489-022-04418-y.pdf
Reference39 articles.
1. Abhilash M, Thakur A, Gupta D et al (2018) Time series analysis of air pollution in bengaluru using ARIMA model. In: Ambient communications and computer systems. Springer, pp 413–426
2. Aditya C, Deshmukh CR, Nayana D et al (2018) Detection and prediction of air pollution using machine learning models. In: International journal of engineering trends and technology (IJETT), pp 204–207
3. Athira V, Geetha P, Vinayakumar R et al (2018) Deepairnet: applying recurrent networks for air quality prediction. Procedia Comput Sci 132:1394–1403
4. Chae S, Shin J, Kwon S et al (2021) PM10 and PM2.5 real-time prediction models using an interpolated convolutional neural network. Sci Reports 11(1):1–9
5. Chang FJ, Chang LC, Kang CC et al (2020) Explore spatio-temporal PM2.5 features in northern Taiwan using machine learning techniques. Sci Total Environment 736:139,656
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. PM2.5 prediction based on dynamic spatiotemporal graph neural network;Applied Intelligence;2024-09-05
2. Fine particulate matter concentration prediction based on hybrid convolutional network with aggregated local and global spatiotemporal information: A case study in Beijing and Chongqing;Atmospheric Environment;2024-09
3. A Ship Trajectory Prediction Method Based on an Optuna–BILSTM Model;Applied Sciences;2024-04-27
4. DDTCN: Decomposed dimension time-domain convolutional neural network along spatial dimensions for multiple long-term series forecasting;Applied Intelligence;2024-04
5. Spatial-temporal graph convolutional networks (STGCN) based method for localizing acoustic emission sources in composite panels;Composite Structures;2023-11
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3