Semi-supervised learning for k-dependence Bayesian classifiers
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence
Link
https://link.springer.com/content/pdf/10.1007/s10489-021-02531-y.pdf
Reference41 articles.
1. Saadatfar H, Khosravi S, Joloudari J, Mosavi A, Shamshirband S (2020) A new K-Nearest neighbors classifier for big data based on efficient data pruning. Mathematics 8(2):286–302
2. Shao Y, Deng N, Yang Z, Chen W, Wang Z (2012) Probabilistic outputs for twin support vector machines. Knowl Based Syst 33:145–151
3. Tanju O, Kalaylioglu Z (2018) A cluster tree based model selection approach for logistic regression classifier. J Stat Comput Simul 88:1394–1414
4. Zhang Y, Lu S, Zhou X, Yang M, Wu L, Liu B, Phillips P, Wang S (2016) Comparison of machine learning methods for stationary wavelet entropy-based multiple sclerosis detection: decision tree, k-nearest neighbors, and support vector machine. Simulation 92:861–871
5. Liu Y, Wang L, Mammadov M (2020) Learning semi-lazy Bayesian network classifier under the c.i.i.d assumption. Knowledge-Based Systems. https://doi.org/10.1016/j.knosys.2020.106422
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Learning high-dependence Bayesian network classifier with robust topology;Expert Systems with Applications;2024-04
2. Exploring complex multivariate probability distributions with simple and robust bayesian network topology for classification;Applied Intelligence;2023-11-03
3. Exploiting the implicit independence assumption for learning directed graphical models;Intelligent Data Analysis;2023-07-20
4. Learning Balanced Bayesian Classifiers from Labeled and Unlabeled Data;IEEE Transactions on Big Data;2023
5. From undirected dependence to directed causality: A novel Bayesian learning approach;Intelligent Data Analysis;2022-09-05
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3