Abstract
AbstractChronic Ocular Diseases (COD) such as myopia, diabetic retinopathy, age-related macular degeneration, glaucoma, and cataract can affect the eye and may even lead to severe vision impairment or blindness. According to a recent World Health Organization (WHO) report on vision, at least 2.2 billion individuals worldwide suffer from vision impairment. Often, overt signs indicative of COD do not manifest until the disease has progressed to an advanced stage. However, if COD is detected early, vision impairment can be avoided by early intervention and cost-effective treatment. Ophthalmologists are trained to detect COD by examining certain minute changes in the retina, such as microaneurysms, macular edema, hemorrhages, and alterations in the blood vessels. The range of eye conditions is diverse, and each of these conditions requires a unique patient-specific treatment. Convolutional neural networks (CNNs) have demonstrated significant potential in multi-disciplinary fields, including the detection of a variety of eye diseases. In this study, we combined several preprocessing approaches with convolutional neural networks to accurately detect COD in eye fundus images. To the best of our knowledge, this is the first work that provides a qualitative analysis of preprocessing approaches for COD classification using CNN models. Experimental results demonstrate that CNNs trained on the region of interest segmented images outperform the models trained on the original input images by a substantial margin. Additionally, an ensemble of three preprocessing techniques outperformed other state-of-the-art approaches by 30% and 3%, in terms of Kappa and F1 scores, respectively. The developed prototype has been extensively tested and can be evaluated on more comprehensive COD datasets for deployment in the clinical setup.
Funder
Manipal Academy of Higher Education, Manipal
Publisher
Springer Science and Business Media LLC
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献