Explaining deep reinforcement learning decisions in complex multiagent settings: towards enabling automation in air traffic flow management
Author:
Funder
SESAR Joint Undertaking under European Union Horizon 2020 research and innovation programme
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence
Link
https://link.springer.com/content/pdf/10.1007/s10489-022-03605-1.pdf
Reference69 articles.
1. Agogino AK, Tumer K (2012) A multiagent approach to managing air traffic flow. Auton Agents Multiagent Syst 24:1–25
2. Bazzan ALC (2009) Opportunities for multiagent systems and multiagent reinforcement learning in traffic control. Auton Agent Multi-Agent Syst 18:342–375
3. Kuyer L, Whiteson S, Bakker B, Vlassis N (2008) Multiagent reinforcement learning for urban traffic control using coordination graphs. Mach Learn Knowl Discov Database:656–671
4. Tumer K, Agogino A (2007) Distributed agent-based air traffic flow management. International Conference on Autonomous Agents and Multiagent Systems (AAMAS ’07)
5. Walraven E, Spaan MTJ, B.Bakker (2016) Traffic flow optimization: A reinforcement learning approach. Eng Appl Artif Intell 52:203–212
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The explainable structure of deep neural network for recommendation systems;Future Generation Computer Systems;2024-10
2. Autonomous interval management of multi-aircraft based on multi-agent reinforcement learning considering fuel consumption;Transportation Research Part C: Emerging Technologies;2024-08
3. GHQ: grouped hybrid Q-learning for cooperative heterogeneous multi-agent reinforcement learning;Complex & Intelligent Systems;2024-04-23
4. Towards efficient airline disruption recovery with reinforcement learning;Transportation Research Part E: Logistics and Transportation Review;2023-11
5. What is Human-Centered about Human-Centered AI? A Map of the Research Landscape;Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems;2023-04-19
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3