Image quality enhancement of 4D light field microscopy via reference impge propagation-based one-shot learning

Author:

Kwon Ki HoonORCID,Erdenebat Munkh-UchralORCID,Kim NamORCID,Kwon Ki-ChulORCID,Kim Min YoungORCID

Abstract

AbstractFour-dimensional (4D) light-field (LF) microscopes can acquire 3D information about target objects using a microlens array (MLA). However, the resolution and quality of sub-images in the LF images are reduced because of the spatial multiplexing of rays by the element lenses of the MLA. To overcome these limitations, this study proposes an LF one-shot learning technique that can convert LF sub-images into high-quality images similar to the 2D images of conventional optical microscopes obtained without any external training datasets for image enhancement. The proposed convolutional neural network model was trained using only one training dataset comprising a high-resolution reference image captured without an MLA as the ground truth. Further, its input was the central view of the LF image. After LF one-shot learning, the trained model should be able to convert well the other LF sub-images of various directional views that were not used in the main training process. Therefore, novel learning techniques were designed for LF one-shot learning. These novel techniques include an autoencoder-based model initialization method, a feature map-based learning algorithm to prevent the overfitting of the model, and cut loss to prevent saturation. The experimental results verified that the proposed technique effectively enhances the LF image quality and resolution using a reference image. Moreover, this method enhances the resolution by up to 13 times, decreases the noise amplification effect, and restores the lost details of microscopic objects. The proposed technique is stable and yields superior experimental results compared with those of the existing resolution-enhancing methods.

Funder

Ministry of Science and ICT, South Korea

Ministry of Education

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3