Network intrusion detection based on conditional wasserstein variational autoencoder with generative adversarial network and one-dimensional convolutional neural networks

Author:

He Jiaxing,Wang XiaodanORCID,Song Yafei,Xiang Qian,Chen Chen

Abstract

AbstractThere is a class-imbalance problem that the number of minority class samples is significantly lower than that of majority class samples in common network traffic datasets. Class-imbalance phenomenon will affect the performance of the classifier and reduce the robustness of the classifier to detect unknown anomaly detection. And the distribution of the continuous features in the dataset does not follow the Gaussian distribution, which will bring great difficulties to intrusion detection. We propose Conditional Wasserstein Variational Autoencoders with Generative Adversarial Network (CWVAEGAN) to solve the class-imbalance phenomenon, CWVAEGAN transform the original dataset through data preprocessing, and then use the improved VAEGAN to generate minority class samples. According to the CWVAEGAN model, an intrusion detection system based on CWVAEGAN and One-dimensional convolutional neural networks (1DCNN), namely CWVAEGAN-1DCNN, is established. By using the examples generated by CWVAEGAN, the problem of intrusion detection on class unbalanced data is solved. Specifically, CWVAEGAN-1DCNN consists of three modules: data preprocessing module, CWVAEGAN, and deep neural network. We evaluate the performance of CWVAEGAN-1DCNN on two benchmark datasets and compared it with the other 16 methods. Experiment results suggest that the performance of CWVAEGAN-1DCNN is better than class-balancing methods, and other advanced methods.

Funder

national natural science foundation of china

Innovation Capability Support Plan of Shaanxi, China

National Science Foundation of Shaanxi Provence

Young Talent fund of University and Association for Science and Technology in Shaanxi, China

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3