A novel second-order learning algorithm based attention-LSTM model for dynamic chemical process modeling
Author:
Funder
the Strategic Cooperation Technology Projects of CNPC and CUPB
the National Key Research and Development Project
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence
Link
https://link.springer.com/content/pdf/10.1007/s10489-022-03515-2.pdf
Reference42 articles.
1. Fang CZ, Xiao DY (1988) Processing identification. Tsinghua University Press, Beijing
2. Shardt YAW, Huang B (2013) Data quality assessment of routine operating data for process identification. Comput Chem Eng 55:19–27. https://doi.org/10.1016/j.compchemeng.2013.03.029
3. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9:1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
4. Ke WS, Huang DX, Yang F, Jiang YH (2017) Soft sensor development and applications based on LSTM in deep neural networks. In: IEEE symposium series on computational intelligence (SSCI), pp 1–6
5. Zhang X, Zou YY, Li SY, Xu SH (2019) A weighted auto regressive LSTM based approach for chemical processes modeling. Neurocomputing 367:64–74. https://doi.org/10.1016/j.neucom.2019.08.006
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Toward understandable semi-supervised learning fault diagnosis of chemical processes based on long short-term memory ladder autoencoder (LSTM-LAE) and self-attention (SA);Computers & Chemical Engineering;2024-10
2. An Interpretable Light Attention–Convolution–Gate Recurrent Unit Architecture for the Highly Accurate Modeling of Actual Chemical Dynamic Processes;Engineering;2024-08
3. Time-Series Forecasting of Large-Scale Green Ammonia Production: An Intelligent Dynamic Modeling Case in the Inner Mongolia Area of China;Industrial & Engineering Chemistry Research;2024-07-08
4. Neural network predictive controller based on the improved TPA-LSTM model for ultra-supercritical units;Heliyon;2024-06
5. A New Neural Network Model Based on Attention Mechanism that Embeds LSTM into RNN for Nonlinear Time-Lag System Identification;Lecture Notes in Electrical Engineering;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3