Modular design patterns for hybrid learning and reasoning systems

Author:

van Bekkum Michael,de Boer MaaikeORCID,van Harmelen FrankORCID,Meyer-Vitali AndréORCID,Teije Annette tenORCID

Abstract

AbstractThe unification of statistical (data-driven) and symbolic (knowledge-driven) methods is widely recognized as one of the key challenges of modern AI. Recent years have seen a large number of publications on such hybrid neuro-symbolic AI systems. That rapidly growing literature is highly diverse, mostly empirical, and is lacking a unifying view of the large variety of these hybrid systems. In this paper, we analyze a large body of recent literature and we propose a set of modular design patterns for such hybrid, neuro-symbolic systems. We are able to describe the architecture of a very large number of hybrid systems by composing only a small set of elementary patterns as building blocks. The main contributions of this paper are: 1) a taxonomically organised vocabulary to describe both processes and data structures used in hybrid systems; 2) a set of 15+ design patterns for hybrid AI systems organized in a set of elementary patterns and a set of compositional patterns; 3) an application of these design patterns in two realistic use-cases for hybrid AI systems. Our patterns reveal similarities between systems that were not recognized until now. Finally, our design patterns extend and refine Kautz’s earlier attempt at categorizing neuro-symbolic architectures.

Funder

Ministerie van Onderwijs, Cultuur en Wetenschap

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence

Reference72 articles.

1. Arora S, Bedathur S, Ramanath M, Sharma D (2020) Iterefine: Iterative KG refinement embeddings using symbolic knowledge. CoRR, arXiv:2006.04509

2. Asai M (2019) Unsupervised grounding of plannable first-order logic representation from images. In: Benton J, Lipovetzky N, Onaindia E, Smith DE, Srivastava S (eds) Proceedings of the Twenty-Ninth International Conference on Automated Planning and Scheduling, ICAPS 2018. AAAI Press, Berkeley, pp 583–591

3. Asim MN, Wasim M, Khan MUG, Mahmood W, Abbasi HM (2018) A survey of ontology learning techniques and applications. Database 2018

4. Bach SH, Broecheler M, Huang B, Getoor L (2017) Hinge-loss markov random fields and probabilistic soft logic. J Mach Learn Res 18:109:1–109:67

5. Baier S, Ma Y, Tresp V (2017) Improving visual relationship detection using semantic modeling of scene descriptions. In: d’Amato C, Fernández M, Tamma V. A. M, Lécué F, Cudré-Mauroux P, Sequeda J. F, Lange C, Heflin J (eds) The semantic web - ISWC 2017 - 16th International semantic web conference, proceedings, Part I, volume 10587 of Lecture notes in computer science. Springer, Vienna, pp 53–68

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3