Power-efficient gesture sensing for edge devices: mimicking fourier transforms with spiking neural networks

Author:

Arsalan MuhammadORCID,Santra Avik,Issakov Vadim

Abstract

AbstractOne of the key design requirements for any portable/mobile device is low power. To enable such a low powered device, we propose an embedded gesture detection system that uses spiking neural networks (SNNs) applied directly to raw ADC data of a 60GHz frequency modulated continuous wave radar. SNNs can facilitate low power systems because they are sparse in time and space and are event-driven. The proposed system, as opposed to earlier state-of-the-art methods, relies solely on the target’s raw ADC data, thus avoiding the overhead of performing slow-time and fast-time Fourier transforms (FFTs) processing. The proposed architecture mimics the discrete Fourier transformation within the SNN itself avoiding the need for FFT accelerators and makes the FFT processing tailored to the specific application, in this case gesture sensing. The experimental results demonstrate that the proposed system is capable of classifying 8 different gestures with an accuracy of 98.7%. This result is comparable to the conventional approaches, yet it offers lower complexity, lower power consumption and faster computations comparable to the conventional approaches.

Funder

Electronic Components and Systems for European Leadership Joint Undertaking under grant agreement

German Federal Ministry of Education and Research

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3