Joint intent detection and slot filling using weighted finite state transducer and BERT
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence
Link
https://link.springer.com/content/pdf/10.1007/s10489-022-03295-9.pdf
Reference60 articles.
1. Tur G, De Mori R (2011) Spoken language understanding: Systems for extracting semantic information from speech. Wiley
2. Liu B, Lane I (2016) Attention-based recurrent neural network models for joint intent detection and slot filling. In: Proceedings of the International Speech Communication Association (INTERSPEECH 2016), pp 685–689
3. Goo C-W, Gao G, Hsu Y-K, Huo C-L, Chen T-C, Hsu K-W, Chen Y-N (2018) Slot-gated modeling for joint slot filling and intent prediction. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp 753–757
4. E H, Niu P, Chen Z, Song M (2019) A novel bi-directional interrelated model for joint intent detection and slot filling. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 5467–5471
5. Obuchowski A, Lew M (2020) Transformer-capsule model for intent detection. In: Proceedings of the AAAI conference on artificial intelligence, pp 13885–13886
Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. On improving conversational interfaces in educational systems;Computer Speech & Language;2025-01
2. Intent detection for task‐oriented conversational agents: A comparative study of recurrent neural networks and transformer models;Expert Systems;2024-08-25
3. UTMGAT: a unified transformer with memory encoder and graph attention networks for multidomain dialogue state tracking;Applied Intelligence;2024-06-25
4. Modeling the impact of out-of-schema questions in task-oriented dialog systems;Data Mining and Knowledge Discovery;2024-06-04
5. Leveraging intent–entity relationships to enhance semantic accuracy in NLU models;Neural Computing and Applications;2024-05-26
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3