Identifying algorithm in program code based on structural features using CNN classification model

Author:

Watanobe YutakaORCID,Rahman Md. MostafizerORCID,Amin Md. Faizul Ibne,Kabir RaihanORCID

Abstract

AbstractIn software, an algorithm is a well-organized sequence of actions that provides the optimal way to complete a task. Algorithmic thinking is also essential to break-down a problem and conceptualize solutions in some steps. The proper selection of an algorithm is pivotal to improve computational performance and software productivity as well as to programming learning. That is, determining a suitable algorithm from a given code is widely relevant in software engineering and programming education. However, both humans and machines find it difficult to identify algorithms from code without any meta-information. This study aims to propose a program code classification model that uses a convolutional neural network (CNN) to classify codes based on the algorithm. First, program codes are transformed into a sequence of structural features (SFs). Second, SFs are transformed into a one-hot binary matrix using several procedures. Third, different structures and hyperparameters of the CNN model are fine-tuned to identify the best model for the code classification task. To do so, 61,614 real-world program codes of different types of algorithms collected from an online judge system are used to train, validate, and evaluate the model. Finally, the experimental results show that the proposed model can identify algorithms and classify program codes with a high percentage of accuracy. The average precision, recall, and F-measure scores of the best CNN model are 95.65%, 95.85%, and 95.70%, respectively, indicating that it outperforms other baseline models.

Funder

Japan Society for the Promotion of Science (JSPS) KAKENHI

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3