Attacking Bitcoin anonymity: generative adversarial networks for improving Bitcoin entity classification

Author:

Zola FrancescoORCID,Segurola-Gil Lander,Bruse Jan L.,Galar Mikel,Orduna-Urrutia Raul

Abstract

AbstractClassification of Bitcoin entities is an important task to help Law Enforcement Agencies reduce anonymity in the Bitcoin blockchain network and to detect classes more tied to illegal activities. However, this task is strongly conditioned by a severe class imbalance in Bitcoin datasets. Existing approaches for addressing the class imbalance problem can be improved considering generative adversarial networks (GANs) that can boost data diversity. However, GANs are mainly applied in computer vision and natural language processing tasks, but not in Bitcoin entity behaviour classification where they may be useful for learning and generating synthetic behaviours. Therefore, in this work, we present a novel approach to address the class imbalance in Bitcoin entity classification by applying GANs. In particular, three GAN architectures were implemented and compared in order to find the most suitable architecture for generating Bitcoin entity behaviours. More specifically, GANs were used to address the Bitcoin imbalance problem by generating synthetic data of the less represented classes before training the final entity classifier. The results were used to evaluate the capabilities of the different GAN architectures in terms of training time, performance, repeatability, and computational costs. Finally, the results achieved by the proposed GAN-based resampling were compared with those obtained using five well-known data-level preprocessing techniques. Models trained with data resampled with our GAN-based approach achieved the highest accuracy improvements and were among the best in terms of precision, recall and f1-score. Together with Random Oversampling (ROS), GANs proved to be strong contenders in addressing Bitcoin class imbalance and consequently in reducing Bitcoin entity anonymity (overall and per-class classification performance). To the best of our knowledge, this is the first work to explore the advantages and limitations of GANs in generating specific Bitcoin data and “attacking” Bitcoin anonymity. The proposed methods ultimately demonstrate that in Bitcoin applications, GANs are indeed able to learn the data distribution and generate new samples starting from a very limited class representation, which leads to better detection of classes related to illegal activities.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3