Author:
Peng Tao,Xu Daqiang,Tang Caiyin,Zhao Jing,Shen Yuntian,Yang Cong,Cai Jing
Publisher
Springer Science and Business Media LLC
Reference56 articles.
1. Goldenberg SL, Nir G, Salcudean SE (2019) A new era: artificial intelligence and machine learning in prostate cancer. Nat Rev Urol 16:391–403
2. Xu X, Sanford T, Turkbey B et al (2022) Shadow-consistent semi-supervised learning for prostate ultrasound segmentation. IEEE Trans Med Imaging 41:1331–1345
3. Jiang J, Guo Y, Bi Z et al (2023) Segmentation of prostate ultrasound images: the state of the art and the future directions of segmentation algorithms. Artif Intell Rev 56:615–651
4. Chen G, Dai Y, Li R et al (2021) SDFNet: automatic segmentation of kidney ultrasound images using multi-scale low-level structural feature. Expert Syst Appl 185:115619
5. Peng T, Zhao J, Wang J (2021) Interpretable mathematical model-guided ultrasound prostate contour extraction using data mining techniques. In: IEEE 15th International Conference on Bioinformatics and Biomedicine (BIBM), pp 1037–1044
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An Enhanced Optimization of Machine Learning Model in Prostate Cancer Detection;2024 IEEE International Conference on Computing, Power and Communication Technologies (IC2PCT);2024-02-09
2. Hybrid Intelligent-Annotation Organ Segmentation on Medical Datasets;2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC);2023-10-01